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Abstract. It is shown that magnetic systems after magnetization in a weak external field for
a finite time tmag exhibit a universal time-dependent relaxation behaviour. The normalized
magnetization decay after switching off an external field does not depend on any sample
parameters and follows a universal lawm(t) ∼ log(1+ tmag/t). This universal time dependence
is confirmed by magnetic relaxation measurements performed on different powders of small
barium hexaferrite magnetic particles at room temperature. The measurements were performed
using the PTB SQUID magnetometer in the Berlin Magnetically Shielded Room.

1. Introduction

A basic feature of the irreversible magnetization relaxation after a sudden change of the
external field for many magnetic systems is a strongly non-exponential character of the
magnetization decaym(t) [1, 2, 3]. Usually the time dependencem(t) can be fitted over
many time decades quite well with a so-called linear–logarithmic law:

m(t) = −S log(t/t0) + C (1)

where a time constantt0 is introduced to preserve the correct dimensionality andS is
called the coefficient of magnetic viscosity [1]. A commonly accepted phenomenological
explanation of the time dependence (1) is based on the assumptions that (i) this non-
exponential magnetic relaxation is caused by thermally activated transitions between
metastable and stable magnetization states and (ii) the system has a broad distribution
densityρ(E) of the energy barriersE separating these states with the distribution width
1E much larger than the system temperature:1E � T [2].

It can be shown [1, 2] that under these assumptions the dependence (1) can indeed
be derived with the magnetic viscosity coefficientS = Tρ(Ec) proportional to the energy
barrier distribution density via a so-called critical energyEc = T log(t/t0). This means that
measurements of the time-dependent relaxation in magnetic systems at various temperatures
can be used to obtain information about the energy barrier distribution. If the origin of this
distribution is known (for example, in fine-magnetic-particle systems the size and shape
distributions of particles) then this information can, in turn, be used for the determination
of the corresponding system parameters [4].

Significant deviations from the linear–logarithmic dependence (1) are usually attributed
to a very narrow distribution of the energy barriers. In this case the assumption1E � T
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fails, which results in more or less important corrections to the dependence (1) [5, 6].
However, deviations from this law have also been observed in systems of small magnetic
particles [7, 8] where the energy barrier distribution densityρ(E) is usually broad enough
to satisfy the condition1E � T , so a new explanation for the non-linear logarithmic
magnetization decay is necessary.

As far as we are aware the first time such an explanation was given was in [8, 9]
where it was shown that if a system is magnetized in a weak external field for a finite
time only some small fraction of metastable states are actually populated densely enough
to contribute significantly to the magnetization decay measured after the removal of the
external field. This leads to significant deviations from the linear–logarithmic dependence
(1) for measurement times (much) larger than the magnetization time. This result was
obtained in [9] in the so-called ‘critical-volume approximation’ for the special case of a
system of non-interacting fine magnetic particles with a uniaxial anisotropy.

In this paper we study magnetic systems which were magnetized for some finite time
tmag in a weak external field (the rigorous criterion for the field strength will be derived
below). We demonstrate that under very general assumptions (which will be listed below)
the magnetization decay in this case follows a universal law, so the time dependence
m(t)/m(tbeg) (i.e. magnetization normalized to its value at the beginning of the measurement
proceduretbeg) is completely determined by the magnetization timetmag only and does not
depend on any other system parameters. We present experimental results confirming this
universal scaling behaviour.

2. Theory

We consider a magnetic system where due to some intrinsic system properties a
demagnetized state is highly degenerate, i.e. there exist very many microscopic system
states with zero total system magnetization and with almost identical system energies.
Furthermore we assume that this system can be divided into a macroscopically large number
of subsystems each of which, in the absence of an external field, has at least two (meta)stable
states. We will denote the magnetic moments of a subsystem in these two states asm1 and
m2, and the energy barrier between these states asE.

The simplest example of such a system is a non-interacting Heisenberg model with a
uniaxial on-site anisotropy where the energy of each spins (which is in this case one of the
subsystems mentioned above) has two minima with the spin projections on the anisotropy
axis sz1 = −sz2 = s. A classical analogue is the non-interacting Stoner–Wohlfarth model
which describes a system of small ferromagnetic particles with a uniaxial single-particle
anisotropy at a temperature much lower than the Curie temperature of the particle material.
Under these conditions the magnetic moment of each particle has a constant absolute value,
so the magnetization can only be reversed by coherent rotation. This also leads to two energy
minima along the two opposite directions of the easy axis. This single-particle picture can
also be applied to the interacting system if the single-particle anisotropy is strong enough
to consider interparticle interactions as a weak perturbation.

A more complicated case is a disordered system of interacting magnetic moments
(particles) with low or absent on-site (single-particle) anisotropy. In this case strong
interparticle interactions in clusters of closely packed particles may lead to the cooperative
particle remagnetization processes after a sudden change of the external field where mainly
particles of a single cluster are involved. Hence these clusters can be considered as
subsystems of the type discussed above. Here a cluster shape anisotropy leads to at least
two possible equilibrium states. The general problem of whether or not in any disordered
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system with long-range dipolar interactions such localized switching (remagnetization)
modes dominate the remagnetization behaviour is discussed in [10].

We start with the consideration of transitions between two (meta)stable states of a
subsystem (a single particle in the simplest case) with the energy barrierE between the
two states. If we denote the magnetic moments in these two states asm1 andm2 and the
probabilities of transitions 1→ 2 and 2→ 1 per unit time asγ12 andγ21 then the averaged
relaxation of thez-projection of the magnetization after switching off the external field will
follow an exponential law [11]:

mz(t) = δm 1n
(0)

1 e−γ (E)t + meq
z (2)

whereδm = mz1−mz2, 1n
(0)

1 denotes the initial (i.e., immediately after the field is switched
off) overpopulation of the state 1,meq

z stands for the equilibrium magnetization of the
subsystem in the absence of the external field, and the relaxation speedγ (E) is the sum of
the transition probabilities per unit time introduced above:γ = γ12 + γ21.

The relative overpopulation1n
(0)

1 achieved after the system was magnetized in an
external field depends on the magnitude of this fieldH , on the magnetization timetmag

and on the energy barrierE. Assuming that in the external field the first state is that with
the lower energy, the application of the standard transition rate theory [11] to the transition
between these states in the presence of the external field gives the relative overpopulation
of the first state as

1n
(0)

1 (E, H, tmag) = 1n
eq

1 (E, H)
(
1 − e−γ (E,H)tmag

)
(3)

where the relaxation speedγ (E, H) = γ12(E12(H)) + γ21(E21(H)) now depends on the
external field due to the field dependencies of the corresponding energy barriersE12(H)

andE21(H), and1n
eq

1 (E, H) denotes the difference between equilibrium populations of the
first state with and without an external field:1n

eq

1 (E, H) = n
eq

1 (E, H) − n
eq

1 (E, H = 0).
We note that1n

eq

1 (E, H) > 0 because we assumed that the energy of the first state in the
external field decreases, so its equilibrium population increases.

Substituting (3) into (2) and integrating over all subsystems with different energy barriers
we obtain an expression for the total time-dependent system magnetization:

m̄z(t) =
∫ Emax

Emin

dE ρ(E) δm(E) 1n
eq

1 (E, H)
(
1 − e−γ (E,H)tmag

)
e−γ (E,H= 0)t . (4)

Here ρ(E) denotes the energy barrier distribution density of the system, andEmin

andEmax stand for the minimal and maximal energy barriers, respectively. Below we set
Emin = 0 andEmax = ∞ which does not change the value of the corresponding integral,
because outside the interval (Emin, Emax) we haveρ(E) = 0. The integral of the constant
termm

eq
z (E) present in (2) vanishes as it gives the equilibrium system magnetization, which

is assumed to be zero in the absence of the external field.
Expression (4) coincides with the usual expression which describes magnetic relaxation

after a system has been magnetized in a large (saturating) external field [1, 2, 4, 12] except
that a factor

r = 1 − e−γ (E,H)tmag

appears. From the derivation of (4) given above it is clear that this factor accounts for the
relative overpopulation of one of the two metastable states if a system was magnetized in a
field of an arbitrary strength for a finite time. In standard treatments of magnetic viscosity
processes when the initial magnetizing field and (or) magnetization time are assumed to be
infinitely large this factor is obviouslyr = 1, because under such conditions only one of
the two possible subsystem states is initially populated.
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No further analytical progress beyond this point is possible in a general case, so some
additional assumptions should be introduced. In this paper we study the case where the
magnetizing field is small in a sense which is specified below. From (4) it is evident
that in our case the weakness of the initial magnetic field means that its influence on
the relaxation speedγ (E, H) corresponding to the magnetization relaxation between two
(quasi)equilibrium states separated by the energy barrierE should be small, so we would
be allowed to putγ (E, H) ≈ γ (E, H = 0).

To find out for which fields this would be the case, we recall that the relaxation speed
depends exponentially on the energy barrier asγ = γ0 exp(−E/T ) where the prefactorγ0

is supposed to be of the orderγ0 ∼ 109 s−1. At this stage it is convenient to introduce
a reduced relaxation speed0 = exp(−E/T ) and a reduced timeτ = tγ0. We also point
out that due to a very large value of the prefactorγ0 this reduced time isτ � 1 for any
reasonable measurement starting time (after the external field is switched off).

As was mentioned above, the relaxation speed depends on the external field due to the
corresponding dependence of the energy barrierE(H). It is again impossible to write down
this dependence in a general case, but for fields much smaller than the switching field of
the subsystem (which is defined as the field where one of the metastable states becomes
absolutely unstable and vanishes) we can use a simple perturbation theory. Namely, if
z-projections of magnetic moments of a subsystem at two metastable states and the same
quantity at a saddle point corresponding to the transition between these states aremz1, mz2

andmsp respectively, then the shift of the related energy barriers due to a small magnetic
field Hz is E12(21) ∼ Hz(msp − mz1(2)). Even if we assume thatmz1 = −mz2 (which is true
for a non-interacting system of fine particles with a uniaxial anisotropy but not necessarily
true in a general case) so that first-order field corrections proportional tomz1 and mz2

in 0(E, H) = 012(E12(H)) + 021(E21(H)) cancel each other, we are still left with the
correction term∼Hzmsp, which is obviously not zero because the magnetic moment of a
subsystem at a saddle point can be arbitrary.

Hence the relaxation speed in a small external field can be estimated as

0(H) ≈ exp(−(E0 − mspHz)/T ) = 0(H = 0) exp(mspHz/T ).

This means that an external field can be considered as small ifmspHz/T � 1. It is
reasonable to expect that in a general case thez-projection of the magnetic moment at
a saddle point has the same order of magnitude as the absolute value of the subsystem
magnetic momentmsp ∼ m, which leads to the conditionmHz/T � 1. This inequality is
not very helpful for practical purposes because it is very difficult to estimate the magnetic
moment of a subsystem. Even in the simplest case of a system of particles with a large
single-particle anisotropy where each particle corresponds to a subsystem we are confronted
with difficulties due to the well known discrepancies between the physical and magnetic
particle volumes [3]. To transform the inequality obtained above into a form which enables
practical estimates of the field strength to be obtained we can use a connection between
the switching field of a subsystemHsw and the corresponding energy barrierE0 in the
absence of the external field:mHsw ∼ E0. The switching field can be estimated as the
coercivity measured at very low temperaturesHsw ∼ Hc(T → 0). The energy barriers
which can be overcome, if we observe the relaxation at the timeτ and temperatureT , are
[1, 2, 5] E0 ∼ T logτ . Hence we obtain a final condition which should be satisfied for a
magnetization field if we are going to consider this field as weak:

mH

T
∼ E0

Hsw

H

T
∼ H

Hsw

log(γ0t) ∼ H

Hc

log(γ0t) � 1. (5)
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We point out that due to the large value ofγ0 ∼ 109 s−1 (so even fort ∼ 10−3 s we
have log(γ0t) ∼ 10) this condition is much stronger than the usual oneH/Hsw � 1.

If the condition (5) is fulfilled we can replace0(E, H) with its value0(E, 0) in the
absence of the external field and rewrite the expression for the time-dependent magnetization
(4) as

m̄z(t) =
∫ ∞

0
dE f (E, H)

(
1 − e−0(E)τmag

)
e−0(E)τ (6)

where we have collected all prefactors together in a single functionf (E, H) to simplify
the notation:

f (E, H) = ρ(E) δm(E) 1n
eq

1 (E, H). (7)

According to the generalized first mean-value theorem of integral calculus (one can
easily verify that all conditions of this theorem are satisfied here) there exists an energy
valueE∗ such that the integral (6) can be rewritten as

m̄z(t) = f (E∗, H)

∫ ∞

0
dE

(
1 − e−0(E)τmag

)
e−0(E)τ . (8)

It can already be seen here that normalized (i.e., divided by its initial value)
magnetization relaxation curves depend on the magnetization time and relaxation timeonly
and donot depend on any system properties because the latter are contained in the prefactor
f (E∗, H) which obviously vanishes after the normalization. To obtain this dependence
we have to substitute the relaxation speed0 = exp(−E/T ) into (8) and perform the
corresponding integration. The result is [13]

m̄z(t) = Tf (E∗, H){log(1 + τmag/τ) + Ei(−τ) − Ei(−τ − τmag)} (9)

where Ei(x) denotes the exponential integral function

Ei(x) =
∫ x

−∞

et

t
dt. (10)

In our caseτ � 1, so both terms containing Ei(x) are exponentially small (Ei(−τ) ∼
exp(−τ)/τ etc) and can be neglected. Hence we arrive at the final expression for the
time-dependent magnetization in the form

m̄z(t) = Tf (E∗, H) log

(
1 + tmag

t

)
. (11)

If we divide all measured magnetization values by themz-value obtained for the initial
time tbeg when the relaxation measurements were started we obtain a universal law for the
magnetization relaxation:

m̄z(t)

m̄z(tbeg)
= log(1 + tmag/t)

log(1 + tmag/tbeg)
(12)

which depends neither on any properties of the particular system nor on the magnetizing
field H .

This result is similar up to a normalization constant to the theoretical dependence
obtained in [9] (see equation (30) in [9], forH → 0 and in our notationtc → tmag)
and coincides with the final expression used in [9] to fit experimental data (see equation
(37) in [9]), because in [9] this normalization constant is assumed to be an adjustable
parameter. However, the final result in [9] is obtained for a non-interacting fine-particle
system in the critical-volume approximation. This means that the width1E of the energy
barrier distribution densityρ(E) of the system should be much larger than the measurement
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temperature:1E/T � 1 (or, to be more precise, this distribution density should vary
slowly enough that its derivativeρ ′(E) = dρ/dE at the critical energyEc = T logτ should
beρ ′(Ec) � ρ(Ec)/T ). We have shown that the universal law (12) is valid for any system
which (i) can be subdivided into subsystems with at least two metastable magnetization
states and in which (ii) relaxation processes in different subsystems may be considered
as independent at least in the main approximation. This means that the influence of the
interaction between subsystems on the energy barrier height can be treated as a small
perturbation (otherwise it is impossible even to write down the basic expression (4)). From
the transition (6)→ (8) which uses only a general theorem of the analysis it can also be
seen thatno additional restrictionsshould be imposed on the distribution density of the
system energy barriersρ(E).

In order to verify that the relaxation behaviour after magnetization in a small external
field does not depend on the properties of the particular magnetic system we have performed
relaxation measurements for four very different magnetic powders using the experimental
procedure described below.

3. Experimental equipment and measurement procedure

The experimental measurements of the magnetic relaxation processes were performed at
the laboratory for biomagnetism of the Physikalisch-Technische Bundesanstalt. Here a
SQUID magnetometer is used to measure extremely weak magnetic fields (range: fT–pT)
of biological origin [14]. This multichannel system features 37 SQUID sensors with a
white-noise level of∼5–8 fT Hz−1/2 [15]. It operates in a frequency range of 0–10 kHz.
However, since SQUIDs in principle cannot measure absolute field values directly, temporal
variations of the magnetic field are recorded. So this system is also well suited for the study
of the relaxation of magnetic systems after magnetizing in weak magnetizing fields. The
sensors are arranged in three concentric rings around a central sensor at the bottom of
a cryostat filled with liquid helium. In our experiments the samples were kept at room
temperature and located outside the cryostat.

Measuring weak magnetic fields always involves problems with magnetic artifacts and
background noise. Since urban magnetic disturbances due to e.g. power line interference or
moving magnetic objects not only interfere with the measurement signal but also exceed the
dynamic range of the sensors, the SQUID magnetometer is operated inside a magnetically
shielded room (the Berlin Magnetically Shielded Room, BMSR), which provides a shielding
factor of e.g. 104 at 0.1 Hz [15]. This enables direct measurements of fields instead of field
gradients inside the chamber to be made. In order to further improve the signal-to-noise
ratio a compensation technique that subtracts the weighted sum of all 37 SQUID signals
from every signal value was applied. Using this special gradiometer design the component
of the homogeneous field perpendicular to the plane of the sensors is reduced by a factor of
typically 50 [16]. The signal of the central SQUID is chosen for further processing since it
is best balanced.

On the other hand the presence of ferromagnetic material causes problems concerning the
application of magnetizing fields. First of all the inner layer—especially—of the chamber
must not be magnetized permanently since this would result in an unwanted residual field
inside the chamber. The second problem is that if the ferromagnetic material of the chamber
walls is subjected to a magnetic field it generates a time-dependent signal that interferes
with the signal of the samples. Therefore a special design of the magnetizing coil has to be
used.

Figure 1 shows the experimental set-up used for the measurements presented here. It
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Figure 1. The experimental set-up used for the magnetization of samples attached to the 37-
channel SQUID magnetometer.

consists of two similar solenoids of 15 mm outer diameter of 25 mm length and with
953 windings, wound in series opposition. This twin coil is fixed at the bottom of the
cryostat. The right-hand coil serves as the magnetizing coil and is placed directly below
the central SQUID sensor. A polystyrene tube of 10 mm diameter and 70 mm length which
contains the samples fits exactly into the interior of the magnetizing coil. The left-hand coil
is used to compensate the field of the right-hand (magnetizing) coil. At a distance large
compared to the dimensions of the magnetizing coil the fields of the two solenoids cancel
each other and thus the magnetization of the chamber walls is prevented. The direction of
the magnetization of the sample is perpendicular to the SQUID plane and therefore produces
a maximum signal.

Due to the geometry of the solenoids the homogeneity of the magnetizing field is poor.
This results in a field constant of 39 mT A−1 at the centre and approximately 10 mT A−1 at
the end of the solenoid. The timing, duration, polarity and amplitude of the current through
the magnetizing twin coil are computer controlled. A maximum current of 180 mA can
be applied. The sample position inside the magnetizing coil can be varied and must be
taken into account for the determination of the true magnetizing field. The present set-up
provides an easy and reproducible positioning of the samples and yields a maximum signal
due to the measurement of the strongest field component and a minimized sample–sensor
distance. An additional feature is the possibility of easily removing the samples during the
measurement which enables the absolute field values to be determined.

During the application of the magnetizing field the SQUIDs must be kept at reset
since the field exceeds the dynamic range of the magnetometer. As the magnetizing field is
switched off the SQUID reset is released and data acquisition is started. We used a sampling
rate of 1000 Hz. Signals were filtered between dc and 64 Hz. Data were collected between
5 ms and 10 s. The lower limit is determined by internal artifacts due to the pulse of the
field removal. Except a baseline adjustment, no further signal processing was performed.

4. Results and discussion

Measurements of magnetic relaxation were performed for four different magnetic powders
of fine barium hexaferrite particles. The chemical composition of the particles, the mean
particle sizeD̄, the reduced remanencejR and the coercivityHc measured at room
temperature and atT = 4 K (for samples B and C) for these powders are collected together
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in table 1. It can be seen that the powders have very different magnetic properties, primarily
due to their different chemical compositions, different mean particle sizes and different size
and shape distributions.

Table 1. Properties of various samples.

D̄ jR Hc (Oe) Hc (Oe)
Chemical composition (nm) (300 K) (300 K) (4 K)

A BaFe10.4Co0.8Ti0.8O19 30 0.26 560 > 2000
B In the form A + 3% SiO2 44 0.45 2960 3100
C BaFe10.4Co0.8Ge0.8O19 24 0.02 40 3500
D BaFe10.3Co0.85Ti0.45Sn0.40O19 26 0.20 290 > 2000

During the measurements samples were positioned near the upper end of the magnetizing
solenoid; using the maximal currentImax = 180 mA results in a field valueHmax ≈
2 mT = 20 Oe. Thus for measurement timest ∼ 0.1–10 s the parameter (5)α =
(H/Hc(T → 0)) log(t/t0) which characterizes the relative strength of the magnetic field is
α ∼ (20/2 × 10−3) log(1010) ∼ 0.2, and hence is indeed small.

Figure 2. The time-dependent magnetization of the sample B fortmag = 1000 s (a) and
tmag = 10 s (b) (note the different scalings of the abscissae) shown to demonstrate the linear–
logarithmic dependencem(t) ∼ log(t) for tmag � t (a) and the inverse-time dependence
m(t) ∼ 1/t for tmag � t (b). The solid lines are the corresponding straight-line fits.

To test the theoretically predicted behaviour given by (12) we have performed three kinds
of measurement. In the first series of experiments, magnetic relaxation curvesm(t) for the
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Figure 3. The time-dependent magnetization of sample B magnetized fortmag = 10 s in
different magnetization fields. Different symbols show normalizedm(t)-dependencies measured
after the sample was magnetized with the coil currents 10 mA (4), 20 mA (+) and 100 mA
(o). The solid line represents the theoretical curve (12) withtmag = 10 s.

Figure 4. Normalized magnetization relaxation curves for four different samples with the
parameters given in table 1 (coil current during the magnetization: 100 mA). The experimental
magnetization timetmag = 10 s was used for the theoretical dependence (12) (solid line).

same sample were measured after this sample was magnetized using different magnetization
times tmag. According to (12), for large magnetization timestmag � t the usual linear–
logarithmic magnetization dependence should be measured, whereas for smalltmag � t the
dependencem ∼ 1/t should be observed. These predictions are confirmed by the results
shown in figure 2, where time-dependent magnetization of the sample B fortmag = 1000 s
(figure 2(a)) andtmag = 10 s (figure 2(b)) are shown (note the different scalings of the
abscissae). These results are analogous to corresponding results reported in [9].

The second group of experiments were carried out to verify that magnetic relaxation
under the conditions given above does not depend on the magnetizing field value (up to the
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initial magnetization amplitude). Time-dependent magnetization (normalized to its initial
value) measured after the sample B was magnetized fortmag = 10 s in magnetic fields
corresponding to coil currentsI = 10, 20 and 100 mA together with the corresponding
theoretical dependence (12) are shown in figure 3. The only adjustable parameter when
fitting the data using (12) was the signal level fort → ∞ because, as pointed out above,
it is impossible to achieve the exact correspondence between zero magnetic moment of the
sample and zero signal level. A good coincidence between various experimental curves and
between experimental data and theoretical predictions can be seen.

Finally the independence of the properties of a particular sample predicted by (12)
for the magnetic relaxation was tested. Figure 4 presents a comparison of (normalized)
experimental curves measured for four samples described above (shown with different
symbols) with the theoretical dependence (12) (solid line), where the magnetization value
for t → ∞ was used as an adjustable parameter for the reasons described above. Again a
coincidence (within experimental errors) between experimental curves for different samples
and also one between experimental data and the predicted theoretical dependence can be
seen. These results confirm that the time dependence of the magnetic relaxation of systems
after magnetization in a weak external field for a finite time does not depend on the particular
system properties. However, the initial magnetization of course depends on the particular
system and can be used for its characterization.

From an experimental point of view the knowledge of the signal shape can be used
for special signal-processing methods in order to detect even weak signals corrupted with a
noisy background. This will help to detect even minor quantities for very dilute magnetic
samples by the measurement of their relaxation signal.

The universal relaxation behaviour studied above can be used to investigate collective
delocalized remagnetization modes of various magnetic systems, because the only
assumption which is necessary for (12) to be valid is the independence of relaxation
processes in different subsystems which form the magnetic system under study. This means
that, for example, even fine-magnetic-particle systems with strong interparticle interactions
may exhibit such a universal behaviour if these interactions lead to the well localized
remagnetization modes. Further studies of this question are under way.
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